sodium hydroxide solution. The complexes were separated on addition of alcohol under constant stirring. The molar conductance values of the complexes showed that all of them exhibit electrolytic behavior in water and are in accordance with 2:1 electrolytes. The complex Na{UO₂ATPH}•4H₂O was insoluble in water and all other common organic solvents. In the pure Na₂H₂ATP•3H₂O the band around 1720 cm⁻¹ is attributed to the protonated form of the adenine moiety.

This band, however, is strongly pH dependent and shifts to 1650 cm^{-1} in ATP⁴⁻ attributable to the non protonated form of the adenine moiety [3]. In all complexes prepared except Na{UO₂ATPH}. $4H_2O$ the infrared spectra in that region showed a strong band around 1650 cm⁻¹ indicating that the adenine moiety of ATP is in its nonprotonated form. In these cases there is probably coordination of the metal ion through the N-7 of the purine ring. The ¹H and ¹³C NMR spectra of the complexes with diamagnetic metal ions also verify these results [4]. The presence of a strong band around 980 cm^{-1} along with changes in intensity and/or frequency in the region between $1300-900 \text{ cm}^{-1}$ where the P–O vibrations occur [5], establish that except for the mercury complex, in all other complexes the metal ions coordinate also through the phosphate group of adenosine-5'-triphosphate.

- 1 A. T. Tu and M. J. Heller in 'Metal Ions in Biological Systems', Vol. 1, H. Sigel Ed., M. Dekker, New York (1979).
- 2 R. G. Bhattacharyya and J. Bhaduri, J. Inorg. Nucl. Chem., 40, 733 (1978).
- 3 F. L. Khalil and T. L. Brown, J. Am. Chem. Soc., 86, 513 (1964).
- 4 J. L. Bock, J. Inorg. Biochem., 12, 119 (1980).
- 5 M. Tsuboi, J. Am. Chem. Soc., 79, 1351 (1957).

T8

Multinuclear NMR Studies on $ZnCl_2-$, $CdCl_2-$ and $HgCl_2-$ Interactions with Adenosin and Guanosin and Other Nitrogen-Heterocycles

MARTIN SCHUMACHER, KLAUS FINNEISER and HARALD GÜNTHER

Fachbereich 8, Organic Chemistry, University of Siegen, Siegen, F.R.G.

¹³C NMR investigations of nitrogen heterocycles have been established as a useful tool for the detection of protonation sites [1]. The ¹³C, ¹H spin-spin interactions are particularly sensitive parameters for this purpose, as was shown recently for purine [2]. Even more direct information is available from ¹⁵N NMR studies, where chemical shifts are strongly affected by protonation [3, 4]. An extension of such studies to interactions between metal salts and nitrogen heterocycles seemed of interest. The present communication deals with results of ¹³C, ¹⁵N, ¹⁹⁹Hg, and ¹¹³Cd NMR investigations of adenosin and guanosin in the presence of ZnCl₂, CdCl₂, and HgCl₂ in DMSO-d₆. The information extracted from the various NMR parameters, in particular, ¹³C,¹H spin—spin coupling constants and ¹⁵N as well as ¹⁹⁹Hg, and ¹¹³Cd chemical shifts is compared, and the contact sites as well as the strength of the interactions are discussed. Similar studies with imidazole and 1-methyl imidazole as well as with purine and its methyl derivatives are described.

- 1 H. Günther, A. Gronenborn, U. Ewers and H. Seel, in 'NMR in Molecular Biology', B. Pullman (ed.), Reidel, Dordrecht, Holland (1978).
- 2 M. Schumacher and H. Günther, J. Am. Chem. Soc., 104, 4167 (1982).
- 3 N. C. Gonella and J. D. Roberts, J. Am. Chem. Soc., 104, 3162 (1982).
- 4 M. Schumacher and H. Günther, Chem. Ber., in print.

T9

Properties and Structure of Pt(II) Complexes with Adenine and Guanine

I. I. VOLCHENSKOVA, N. N. MAIDANEVICH and L. I. BUDARIN

The L. V. Pisarzhevsky Institute of Physical Chemistry of the Ukrainian SSR Academy of Sciences, Kiev, U.S.S.R.

The electroneutral *cis*-dichloro complexes of Pt(II) with DNA purine bases are potential chemotherapeutic agents. Therefore, it was necessary to study their properties and structure. In solving the problem one can also elucidate the effect of the metal ions, introduced into a living body, on the biological action of nucleic acids and their monomeric units. Metal complexes with guanine (Gu) are of special interest as a Gu base is the most reactive fragment of DNA with which both chemical cancer agents and Pt(II) antitumour drugs interact selectively.

The physico-chemical properties and structure of the electroneutral complexes of Pt(II) with adenine (Ad) and Gu obtained by mixing aqueous-acidic solutions of the ligands and the metal salt, K_2 PtCl₄, (1:1 mole ratio) were studied. Complexes of the type PtCl₂L(H₂O)_n were synthesized, where L = Ad or Gu, n = 0, 1, 2, 3. The complexes with n = 3 dissolve in DMFA and DMSO and the solutions obtained are practically nonconductors of current and are storage stable. The UV spectra (DMSO) are characterized by the intraligand bands of a charge transfer for PtCl₂-Ad(H₂O)₃ (I) $\nu = 273$ nm, $\epsilon = 10000$ 1 mol⁻¹ cm⁻¹,